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Introduction
Recently, an addition of a microscope objective in the detection system of a
photothermal technique (Moksin, 1995) has provided a means of measuring
thermal radiation from a selected single isolated particle. In this technique,
surface cooling rate is determined from the time-resolved measurement of
blackbody radiation subsequent to a short pulse heating. The change in the
emitted blackbody radiation is determined by the change in the surface
temperature of the sample, which in turn is affected by absorption of the
heating radiation and the interaction of heat waves with the sample.

Detection of infrared radiation emission from a single particle is important in
those domains of science (e.g. high-tech products particle contaminants control,
air pollution monitoring and forensic science) whereby only a limited number of
particles can be available. The thermal properties and size of the particles,
together with other properties available from other techniques can be used to
identify the origin of the particles or source of the contaminants.

In this article a numerical solution for pulse-induced changes in theoretical
thermal radiation emission from a single spherical particle on thermally bad
conduction surface is derived, and this numerical result is compared with a
corresponding analytical solution. 

Heat conduction equation
We assume that the pulsed heating causes the temperature of a non-volatile
spherical particle of radius, a, to increase rapidly and uniformly by θo. The
temperature then declines as energy is lost to the surroundings by radiation,
conduction and convection.

Thus, we can assume that inside the particle and at a sufficiently large
distance from it:
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(1)

For a thermally bad conducting surface the heat conduction at the interface can
be neglected and the transient behaviour is then defined by an energy balance
over a differential spherical shell of surrounding air (Carslaw and Jaeger, 1989;
Moksin, 1995) :

(2)

where k, ρ and c are air thermal conductivity, density and specific heat capacity
respectively.

For the case of small temperature difference, heat loss by thermal radiation
and convection in the absence of air flow can be neglected. Thus, the remaining
mechanism of heat transfer will be conduction to the surrounding air, as
expressed below:

(3)

where ρs and cs are density and specific heat capacity of the particle
respectively.

In order to find out the change in the surface temperature of the particle,
equation (3) is solved with initial conditions at t = 0, i.e. θ = θo for the particle
and θ = 0 for the surrounding air. Using dimensionless variables: X = ra, V = –θθo

,
U = X–θθo

, and L = –la (l = distance between particles centres) equations (1-3) can
be rewritten as:

(4)

(5)

(6)

where τ = kt/(3ρca2) and Φ = ρscs/(3ρc).
In order to solve these equations the Laplace transform approach is used, i.e.

instead of solving the given differential equation with initial and boundary
condition directly, the original equation is transformed to an ordinary
differential equation. Thus, the Laplace transform of equation (5), after
inserting the initial conditions, is:



Pulsed heating
in a particle

model

219

(7)

which has a general solution:

(8)

where the functions γ1(p) and γ2(p) can be obtained from the boundary condition
in equations (4) and (6). Therefore, the Laplace transform of the change in the
surface temperature of the particle can be written as:

(9)

The final form of the Laplace transform for normalised change in the surface
temperature of the particle can be obtained substituting the general solution (8)
into (9) for corresponding values of γ1 and γ2 and also inserting X = 1 as L → ∞
(in the single particle model l, distance between the particles centres, → ∞).
Thus

(10)

where α = 1/Φ. With the help of the inversion of the Laplace transform, it is possible
to find the change in the surface temperature from the image function (10).
Consequently, normalised change in the temperature of the particle surface is:

(11)

Results and discussion
An analytical solution of (11) cannot be found in the literature even though the
Laplace transforms are discussed extensively (Oberhettinger and Badii, 1973;
Roberts and Kaufman, 1966). For the particles of interest the constant α is less
than 0.005 (see Table I) and we found that function

can be approximated with function Tap(p) = p + α
1 (Figure 1). 

In this case, the normalised temperature of the particle surface can be
expressed as:

(12)

T p
p a p a

th ( ) =
+ +

1
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Figure 1 shows that the approximation function, Tap( p), and theoretical
function, Tth(p), have the same behaviour, especially with a large value of p. We
have deliberately plotted both functions for α = 0.02 to be able to see the extent
of deviation between the functions. In our case, when α < 0.005, for p > 0.2 the
difference between Tth and Tap is less than 1 per cent and for p >100 the
difference is less than 0.05 per cent with an asymptotic behaviour to 0 in the
neighbourhood of p → ∞ (see Figure 2).

According to the Laplace transform theory (Doetsch and Herschel, 1971;
Krylov and Skoblia, 1969) it is expected that the solution obtained from
equation (11) will be identical to formula (12) at small values of time if the image
functions are identical for large values of p. Nevertheless, it is necessary to

Specific heat
Density, ρs capacity, cs

Material (kg/m3) J/(kg.K) Φ α τa (ms) τn (ms)

Coal 737 1,300 270 0.0037 2.723 2.696
Cement 1,500 700 296 0.0034 2.985 2.961
Sand 1,515 800 341 0.0029 3.445 3.421
Lead 11,373 130 416 0.0024 4.203 4.178
Limestone 2,500 900 633 0.0016 6.396 6.370
Clay 1,460 880 362 0.0028 3.653 3.627

Table I.
Analytical and numerical
decay time for pulsed
induce change in thermal
radiation from a single
spherical particle for
some materials of interest

Figure 1.
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compare the exact solution of equation (11) with the approximation (12). This
requires the inverse Laplace transform to be performed numerically (see
Appendix). Instead of applying this procedure directly to the function Tth it is
more preferable to evaluate the inverse Laplace transform of function Tth-Tap.
By assuming:

(13)

the normalised change in surface temperature can be expressed as
(Oberhettinger and Badii, 1973)

(14)

This allows the finding of straightforward deviation between the numerical
solution and the approximation (12).

Figure 3 shows the plot of the computed deviation f1(τ ) for a coal particle.
The analytical and numerical solutions are identical to within less than 1 per
cent. This is also obvious in Figure 4 where the numerical and analytical
solutions are shown in a logarithmic presentation.

The decay times, τa (for analytical solution) and τn (for numerical solution) are
shown in Table I. For particles which satisfy the condition α < 0.005 (Φ > 270)
the decay time measurement error is less than 1 per cent. For a fictitious particle
with α = 0.02 (Φ = 50) the error is less than 5 per cent.

Figure 2.
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Figure 3.
Numerical inverse
Laplace transform of
the function Tap-Tth
versus relative time τ,
for coal particle
α = 0.0037
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Summary
The transient temperature for pulsed heating in a single spherical model has
been derived using the Laplace transform algorithm based on Fourier series.
We assumed that the substrate is a thermally bad conducting surface and then
head conduction at the interface can be neglected. The computation for the
transient surface temperature of the particle was performed in such a way as to
obtain a straightforward deviation of the analytical solution (12) from the
numerical result. It has been proved that for some particles (α < 0.005) the
analytical solution provided a reasonably accurate description of the model,
otherwise the numerical solution should be used in the general case.
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Appendix
The main idea of inverse Laplace transform using Fourier series is to obtain the original function,
g(t) from a finite number of values of its image function, G(t). Only the values of the image
function, G(p), at the equidistant points p =(2n + 1)σ (σ is an arbitrary number greater than 0,
n = 0, 1, 2 …) are used. The algorithm is based on two assumptions, which do not, however, limit
its generality. First, the function to be transformed, G(p) must exist for p > 0. Second we assume
that g(t), (g(t) = L–1 {G(p)}) satisfies the condition g(0) = 0. Both conditions are fulfilled by the
function (Tth–Tap)( p). Then, the expression of deviation between the exact solution and
approximate solution can be expressed as:

(15)

where, β = arccos[exp(–στ )] while Ck has to be computed. The value of σ is chosen according to
the interval in which f1(t) is to be found. For small τ, large σ is chosen and on the other hand for
large τ , small σ is chosen because t → ∞ corresponds to p → ∞ (Doetsch, 1971). In our
computation, we have used 17 terms into expression (15) which is more than enough for Fourier
series to converge.


